This conclusion argues that a perfect match between Holography Light and other results does not justify the full holographic techniqueThis conclusion argues that a perfect match between Holography Light and other results does not justify the full holographic technique

Holography Light: Justification and Future Theory

2025/11/04 09:43
  • Prologue
  • Diagrammatic(s) Rules
  • Straight-forward Eikonal
  • Legacy Bosonization
  • Wonton Holography
  • Holographic Propagators
  • Strange Cuprates
  • Stranger Things
  • Epilogue

Epilogue

\ Importantly, even a perfect match between the holographic and some other (believed to be comparatively better established) results would not provide a firm justification for the holographic technique itself. Indeed, any results obtained under the assumption of a purely classical (non-dynamical) background metric - which assumption is overwhelmingly common to the practical applications of the holographic approach - would only pertain to its ’light’ version, as opposed to the full-fledged one. As to the possible desk-top simulations of such a ’holography light’ scenario, those have been proposed for several platforms, including flexible graphene flakes [55] and hyperbolic metamaterials [56].

\ Projecting into the future, it seems quite likely that the ultimate theory of correlated quantum matter will eventually assume a form akin to quantum hydrodynamics formulated in terms of the moments of quantum distribution function [57]. Such a collective-field description of the bulk (a.k.a. ’phase’) space with the d-dimensional momentum providing for the extra dimensions could be equally well called either bosonization, or holography. Regardless of the name, though, taking a full advantage of this formally exact approach might turn out to be difficult, especially in the physically relevant cases of N ∼ 1 and moderate coupling strengths.

\ Nevertheless, there still seems to be no good reason neither for this theory to conform to anything as specific and convenient as the EMD Lagrangian (22), nor for the corresponding holographic dictionary to be copy-pasted ’ad verbatim’ from string/HEP theory.

\ One would hope that exposing the existing controversy over this and related issues might be helpful to authors of the future original (of course) studies on the topic - as well as their knowledgeable and unbiased (of course) referees.

\ This note was compiled, in part, while staying at and being supported by the Aspen Center for Physics under the NSF Grant PHY-1607611.

\


\

  1. T. Holstein, R. E. Norton and P. Pincus, Phys. Rev. B 8, 2649 (1973); M. Y. Reizer, Phys.Rev.B39, 1609 (1989); ibid, B40, 11571 (1989).

    \

  2. C.J.Pethick, G.Baym, and H.Monien, Nucl.Phys.A498, 313c (1989).

    \

  3. P. A. Lee, Phys. Rev. Lett. 63, 680 (1989); L. B. Ioffe and A. I. Larkin, Phys. Rev. B 39, 8988 (1989); P.A. Lee and N. Nagaosa, ; Phys. Rev. Lett. 64, 2450 (1990); Phys. Rev. B46, 5621 (1992); J.Gan and E. Wong, Phys. Rev. Lett. 71, 4226 (1993); C. Nayak and F. Wilczek, Nucl. Phys. B 430, 534 (1994); S.Chakravarty et al., Phys. Rev. Lett. 75, 3584 (1995).

    \

  4. C. Castellani and C. Di Castro, Physica C 235-240, 99 (1994); C. Castellani et al., Phys. Rev. Lett. 72, 316 (1994); W. Metzner, D. Rohe, and S. Andergassen, Phys. Rev. Lett. 91, 066402 (2003); L. Dell’Anna and W. Metzner, Phys. Rev. B 73, 045127 (2006); Phys. Rev. Lett. 98, 136402 (2007).

    \

  5. B. I. Halperin, P. A. Lee and N. Read, Phys. Rev. B 47, 7312 (1993)

    \

  6. A. Chubukov, C. Pepin and J. Rech, Phys. Rev. Lett. 92, 147003 (2004); Phys. Rev. B 74, 195126 (2006); A. V. Chubukov, Phys. Rev. B71, 245123 (2005);

    \

  7. A. V. Chubukov, D. V. Khveshchenko, Phys. Rev. Lett. v.97 p.226403 (2006), cond-mat/0604376.

    \

  8. T. A. Sedrakyan and A. V. Chubukov, Phys. Rev. B 79, 115129 (2009), arXiv:0901.1459.

    \

  9. S.-S. Lee, Phys. Rev. B 78, 085129 (2008), Phys. Rev. D 79, 086006 (2009); 2009. Phys. Rev. B 80:165102; Metlitski M, Sachdev S. 2010. Phys. Rev. B 82:075127; 2010. Phys. Rev. B 82:075128.

    \

  10. D. F. Mross et al, Phys. Rev. B 82 (2010) 045121; arXiv:1003.0894; Raghu S, Torroba G, Wang H. 2015. Phys. Rev. B 92:205104 Fitzpatrick A.L. et al, 2015. Phys. Rev. B92:045118 A. Eberlein, I. Mandal, S. Sachdev, Phys. Rev. B 94, 045133 (2016), arXiv:1605.00657.

    \

  11. B.L. Altshuler and L.B. Ioffe, Phys. Rev. Lett. 69, 2979 (1992); E.Altshuler et al, arXiv:cond-mat/9404071; A. Mirlin, E. Altshuler, P. Woelfle, Ann. Physik 5 (1996) 281; I.V. Gornyi, A. Mirlin, Phys. Rev. E 65 (2002) 025202; D. Taras-Semchuk, K. B. Efetov, Phys. Rev. B 64, 115301 (2001).

    \

  12. D. V. Khveshchenko and S. V. Meshkov, Phys. Rev. B 47, 12051 (1993); D. V. Khveshchenko, Phys. Rev. Lett. 77, 1817 (1996).

    \

  13. P.C.E.Stamp, Phys.Rev.Lett.68, 2180 (1992); J.Phys.(France) 3, 625 (1993).

    \

  14. D. V. Khveshchenko and P. C. E. Stamp, Phys. Rev. Lett. 71, 2118 (1993); Phys. Rev. B 49, 5227 (1994);

    \

  15. M. J. Lawler et al, Phys. Rev. B 73, 085101 (2006); cond-mat/0508747; M. J. Lawler, E. Fradkin, Phys. Rev. B 75, 033304 (2007); cond-mat/0605203.

    \

  16. P.S¨aterskog, B. Meszena, and K. Schalm, Phys. Rev. B 96, 155125 (2017), arXiv:1612.05326; P.S¨aterskog, SciPost Phys. 4, 015 (2018), arXiv:1711.04338.

    \

  17. Tomer Ravid, Tom Banks, arxiv.org/abs/2208.01183.

    \

  18. L. B. Ioffe, D. Lidsky, and B. L. Altshuler, Phys. Rev. Lett. 73, 472 (1994); B. L. Altshuler, L. B. Ioffe, and A. J. Millis, Phys. Rev. B 50, 14048 (1994); ibid B52, 5563 (1995); ibid B53, 415 (1996); B.L.Altshuler et al, ibid B52, 4607 (1995).

    \

  19. A. Luther, Phys. Rev. B 19, 320 (1979). F. D. M. Haldane, Helv. Phys. Acta. 65, 152 (1992); A. Houghton and J. B. Marston, Phys. Rev. B 48, 7790 (1993); A. Houghton et al., ibid. 50, 1351 (1994); J. Phys. 6, 4909 (1994); H.-J. Kwon et al., Phys. Rev. Lett. 73, 284 (1994); Phys. Rev. B 52, 8002 (1995); A. H. Castro Neto and E. Fradkin, Phys. Rev. Lett. 72, 1393 (1994); Phys. Rev. B 49, 10877 (1994); ibid. 51,4048 (1995); P. Kopietz et al., Phys. Rev. B 52, 10877 (1995); A. Houghton, H. J. Kwon, and J. B. Marston, Adv. Phys. 49, 141 (2000). J. Nilsson and A. H. Castro Neto, Phys. Rev. B 72, 195104 (2005).

    \

  20. D. V. Khveshchenko, R. Hlubina, and T. M. Rice, Phys. Rev. B 48, 10766 (1993).

    \

  21. D. V. Khveshchenko, Phys. Rev. B 49, 16893 (1994); ibid B 52, 4833 (1995).L.V. Delacretaz et al, Phys. Rev. Research 4, 033131 (2022), arXiv:2203.05004.

    \

  22. W. Metzner,C.Castellani, C, Di Castro, Advances in Physics, 47, 317 (1998).P. Kopietz and G. E. Castilla, Phys. Rev. Lett. 76, 4777 (1996); ibid 78, 314 (1997).K. B. Efetov, C. Pepin, H. Meier, Phys. Rev. Lett. 103,186403 (2009); Phys. Rev. B 82, 235120 (2010).

    \

  23. S. A. Hartnoll, Class. Quant. Grav. 26, 224002 (2009); C. P. Herzog, J.Phys. A42 343001 (2009); J. McGreevy, Adv. High Energy Phys. 2010, 723105 (2010); J. Polchinski, arXiv:1010.6134; J. McGreevy, Adv.High Energy Phys. 2010, 723105 (2010); S. A. Hartnoll, Class. Quant. Grav. 26, 224002 (2009); S.Sachdev, Annual Review of Cond. Matt. Phys.3,9 (2012); J. Zaanen et al, ’Holographic Duality in Condensed Matter Physics’, Cambridge University Press, 2015; M. Ammon and J. Erdmenger, ’Gauge/Gravity Duality’, Cambridge University Press, 2015; S.A. Hartnoll, A.Lucas, and S. Sachdev, ’Holographic Quantum Matter’, MIT Press, 2018; J. Zaanen,arXiv:2110.00961.S. Kachru, X. Liu and M. Mulligan, Phys. Rev. D 78, 106005 (2008); S. A. Hartnoll and A. Tavanfar, Phys. Rev. D 83, 046003 (2011); S. A. Hartnoll, D. M. Hofman, and D. Vegh, arXiv:1105.3197; S. A. Hartnoll et al, JHEP 1004, 120 (2010); V. G. M. Puletti et al, JHEP 1101, 117 (2011); M. Edalati, R. G. Leigh and P. W. Phillips, Phys. Rev. Lett. 106, 091602 (2011); M. Edalati et al, Phys. Rev. D 83, 046012 (2011).

    \

  24. S. S. Lee, Phys. Rev. D 79, 086006 (2009); H. Liu, J. McGreevy and D. Vegh, arXiv:0903.2477; M. Cubrovic, J. Zaanen and K. Schalm, Science 325, 439 (2009), arXiv:0904.1993; arXiv:1012.5681; T. Faulkner et al,arXiv:0907.2694,1003.1728,1101.0597,1306.6396; N. Iizuka et al, arXiv:1105.1162; D. Guarrera and J. McGreevy, arXiv:1102.3908; K. Jensen et al, arXiv:1105.1772; L. Huijse, S. Sachdev, arXiv:1104.5022; L.Huijse, S.Sachdev, B.Swingle,arXiv:1112.0573; F.Herˇcek, V. Gecin, M. Cubrovi´c, 2208.05920. ˇ 29 C.Charmousis et al, JHEP 1011, 151 (2010); E

    \

  25. C.Charmousis et al, JHEP 1011, 151 (2010); E. Perlmutter, JHEP 06 28 2012Xi Dong et al, JHEP 1206 041, 2012, arXiv:1201.1905; B.S.Kim, JHEP 1206 (2012) 116, arXiv:1202.6062.

    \

  26. D. V. Khveshchenko, Phys. Rev. B 86, 115115 (2012), arXiv:1205.4420.

    \

  27. S. Sachdev and J. Ye, Phys. Rev. Lett. 70 (1993) 3339, arXiv:cond-mat/9212030; S. Sachdev, Phys.Rev.Lett.105, 151602 (2010); Phys. Rev. D 84, 066009 (2011); Phys.Rev.X5, 041025 (2015); A. Kitaev, KITP seminars, 2015; arXiv:1711.08169; A. Kitaev and S. J. Suh, JHEP05(2018)183, arXiv:1711.08467;1808.07032; S.Sachdev, arXiv:2205.02285.

    \

  28. D. V. Khveshchenko, SciPost Phys. 5 012 (2018),arXiv:1705.03956; Condens. Matter 2018, 3(4), 40,arXiv:1805.00870; ibid 2020, 5, 37, arXiv:2004.06646.

    \

  29. Erez Berg et al, Annual Review of Condensed Matter Physics 2019 10,63,arXiv:1804.01988; Y. Schattner et al, Phys. Rev. X 6, 031028 (2016); S. Lederer et al, PNAS 114(19), 4905 (2017); X.Y.Xu et al, Phys. Rev. X 7, 031058 (2017); X.Y.Xu et al, npj Quantum Mater. 5, 65 (2020),arXiv:2003.11573; A.Klein et al, Phys. Rev. X 10, 031053 (2020),arXiv:2003.09431.

    \

  30. D.V.Khveshchenko, Lith.J.Phys.,55,208(2015), arXiv:1404.7000; ibid 56,125(2016),arXiv:1603.09741.

    \

  31. M.Mitrano et al, PNAS (2018), 21, 495; Romero-Bermudez J. et al, Phys. Rev. B 99, 235149 (2019); A.A.Husain et al, Phys. Rev. X 9, 041062 (2019); P. W. Phillips, N. E. Hussey, P. Abbamonte, Science, 377, 1-10 (2022); B. Michon et al, arXiv:2205.04030; E. van Heumen et al, Phys Rev B106, 054515 (2022); F. Balm et al, 2211.05492.

    \

  32. D. V. Khveshchenko, Lith.J.Phys.,59,104(2019), arXiv:1905.04381; ibid 60,185(2020),arXiv:1912.05691; ibid 62 2(2022),arXiv:2205.11478.

    \

  33. S. S. Gubser and F. D. Rocha, Phys. Rev. D 81, 046001 (2010),arXiv:0911.2898.

    \

  34. D. V. Khveshchenko, EPL 111 (2015) 1700, arXiv:1502.03375; Lith. J. of Phys. 61, 1 (2021), arXiv:2011.11617.

    \

  35. S.A. Hartnoll and A.Karch, Phys. Rev. B 91, 155126 (2015); A. Karch, K. Limtragool, P. W. Phillips, JHEP 2016, 175 (2016), arXiv:1511.02868; A. Amoretti and D. Musso, JHEP 1509 (2015) 094; A. Amoretti et al, Adv. in Phys. X, v.2, 409 (2017); Phys. Rev. Res 2, 023387 (2020).

    \

  36. A.A. Patel and S. Sachdev, Phys. Rev. Lett. 123, 066601 (2019); Phys. Rev. B 98 125134 (2018); D. Miserev, J. Klinovaja, and D. Loss, Phys. Rev. B 103 075104 (2021); D. Chowdhury et al,arXiv:2109.05037; I. Esterlis et al,Phys. Rev. B 103, 235129; D. Chowdhury and E. Berg, Phys. Rev. Research 2 013301 (2020); P. Cha et al, Phys. Rev. Research 2 033434 (2020); H. Guo, Y. Gu, and S. Sachdev, Phys. Rev. B 100, 045140; A.A.Patel et al, arXiv:2203.04990; I. Esterlis et al, Phys. Rev. B 103, 235129 (2021), arXiv:2103.08615; D, Chowdhury et al, Reviews of Modern Physics 94, 035004 (2022), [arXiv:2109.05037]; A.A. Patel et al, arXiv:2203.04990; Wang, X., Chowdhury, D., arXiv:2209.05491; H. Guo et al, Phys. Rev. B 106, 115151 (2022).

    \

  37. G. T. Horowitz, J. E. Santos, and D. Tong, JHEP, 07 (2012) 168, arXiv:1204.0519; ibid 011 (2012) 102, arXiv:1209.1098.

    \

  38. A. Donos and J. P. Gauntlett, JHEP 04 (2014); 040; M. Rangamani, M. Rozali, and D. Smyth, ibid 07 (2015) 024; B. W. Langley, G. Vanacore, and P. W. Phillips, arXiv:1506.06769.

    \

  39. G. A. Inkof, K. Schalm, J. Schmalian, NPJ Quantum Materials volume 7, 56 (2022), arXiv:2108.11392; J.Schmalian, arXiv:2209.00474;

    \

  40. B. Meszena et al, Phys. Rev. B 94, 115134, arXiv:1602.05360; P.S¨aterskog, SciPost Phys. 10, 067 (2021), arXiv:2010.03077.

    \

  41. P. Nozieres, J. Phys. (Paris) 2, 443 (1992).

    \

  42. J. A. Hertz, Phys. Rev. B 14, 1165 (1976); A. J. Millis, Phys. Rev. B 45, 13047 (1992); Ar. Abanov, A. V. Chubukov, and J. Schmalian, Advances in Physics 52, 119 (2003), arXiv: cond-mat/0107421.

    \

  43. T.D.Son, Phys. Rev. X 5, 031027 (2015), arXiv:1502.03446; Prog. Theor. Exp. Phys. 2016, 12C103, arXiv:1608.05111; Annu. Rev. Condens. Matter Phys. 9, 397 (2018), arXiv:1805.04472.

    \

  44. D. V. Khveshchenko, Phys. Rev. B 75, 153405 (2007), arXiv:cond-mat/0607174.

    \

  45. H.Schulz, Phys.Rev.Lett.71, 1864 (1993).

    \

  46. W. Rantner and X-G. Wen, Phys. Rev. Lett. 86, 3871 (2001); J. Ye, Phys. Rev. Lett.87, 227003 (2001); M. Franz and Z. Tesanovic, Phys. Rev. Lett. 87, 257003 (2001).

    \

  47. D. V. Khveshchenko, Phys. Rev. Lett. 90, 199701 (2003), arXiv:cond-mat/0306079; ibid 91, 269701 (2003), arXiv:cond-mat/0306080; Phys. Rev. B 65, 235111 (2002), arXiv:cond-mat/0112202; Nucl. Phys. B642, 515 (2002, arXiv:cond-mat/0204040; arXiv:cond-mat/0205106; V. P. Gusynin, D.V. Khveshchenko, and M. Reenders, Phys. Rev. B 67, 115201 (2003), arXiv:cond-mat/0207372.

    \

  48. 5 E. Bagan, M. Lavelle and D. McMullan, Annals of Phys. 282, 471, 503 (2000).

    \

  49. D. V. Khveshchenko and A. G. Yashenkin, Phys. Lett. A, v.309, p.363 (2003), arXiv:cond-mat/0202173; Phys. Rev. B 67, 052502 (2003), arXiv:cond-mat/0204215;

    \

  50. D. V. Khveshchenko, Phys. Rev. B 75, 241406(R) (2007), arXiv:cond-mat/0611485; EPL, p.57008, v.82 (2008), arXiv:0705.4105.

    \

  51. D. V. Khveshchenko, EPL, 104, 47002 (2013), arXiv:1305.6651.

    \

  52. D. V. Khveshchenko, EPL, 109, 61001 (2015), arXiv:1411.1693.

    \

  53. D. V. Khveshchenko, Lith. J. of Phys., 61, 233, 2021, arXiv:2102.01617.

\

:::info Author:

(1) D. V. Khveshchenko, Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC 27599.

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.
Share Insights

You May Also Like

Microsoft Corp. $MSFT blue box area offers a buying opportunity

Microsoft Corp. $MSFT blue box area offers a buying opportunity

The post Microsoft Corp. $MSFT blue box area offers a buying opportunity appeared on BitcoinEthereumNews.com. In today’s article, we’ll examine the recent performance of Microsoft Corp. ($MSFT) through the lens of Elliott Wave Theory. We’ll review how the rally from the April 07, 2025 low unfolded as a 5-wave impulse followed by a 3-swing correction (ABC) and discuss our forecast for the next move. Let’s dive into the structure and expectations for this stock. Five wave impulse structure + ABC + WXY correction $MSFT 8H Elliott Wave chart 9.04.2025 In the 8-hour Elliott Wave count from Sep 04, 2025, we saw that $MSFT completed a 5-wave impulsive cycle at red III. As expected, this initial wave prompted a pullback. We anticipated this pullback to unfold in 3 swings and find buyers in the equal legs area between $497.02 and $471.06 This setup aligns with a typical Elliott Wave correction pattern (ABC), in which the market pauses briefly before resuming its primary trend. $MSFT 8H Elliott Wave chart 7.14.2025 The update, 10 days later, shows the stock finding support from the equal legs area as predicted allowing traders to get risk free. The stock is expected to bounce towards 525 – 532 before deciding if the bounce is a connector or the next leg higher. A break into new ATHs will confirm the latter and can see it trade higher towards 570 – 593 area. Until then, traders should get risk free and protect their capital in case of a WXY double correction. Conclusion In conclusion, our Elliott Wave analysis of Microsoft Corp. ($MSFT) suggested that it remains supported against April 07, 2025 lows and bounce from the blue box area. In the meantime, keep an eye out for any corrective pullbacks that may offer entry opportunities. By applying Elliott Wave Theory, traders can better anticipate the structure of upcoming moves and enhance risk management in volatile markets. Source: https://www.fxstreet.com/news/microsoft-corp-msft-blue-box-area-offers-a-buying-opportunity-202509171323
Share
BitcoinEthereumNews2025/09/18 03:50