Acknowledging the collaborators from SLAC National Accelerator Laboratory and the University of Chicago for discussions and technical contributions, particularly with differentiable kernel density estimation.Acknowledging the collaborators from SLAC National Accelerator Laboratory and the University of Chicago for discussions and technical contributions, particularly with differentiable kernel density estimation.

Collaborative Research in Accelerator Physics: Acknowledgments and DOE Funding

2025/10/08 23:30

I. Introduction

II. Maximum Entropy Tomography

  • A. Ment
  • B. Ment-Flow

III. Numerical Experiments

  • A. 2D reconstructions from 1D projections
  • B. 6D reconstructions from 1D projections

IV. Conclusion and Extensions

V. Acknowledgments and References

V. ACKNOWLEDGEMENTS

We are grateful to Ryan Roussel (SLAC National Accelerator Laboratory), Juan Pablo Gonzalez-Aguilera (University of Chicago), and Auralee Edelen (SLAC National Accelerator Laboratory) for discussions that seeded the idea for this work and for sharing their differentiable kernel density estimation code.

\ This manuscript has been authored by UT Battelle, LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-public-access-plan).

\


[1] B. Cathey, S. Cousineau, A. Aleksandrov, and A. Zhukov, First six-dimensional phase space measurement of an accelerator beam, Phys. Rev. Lett. 121, 064804 (2018).

\ [2] K. Ruisard, A. Aleksandrov, S. Cousineau, V. Tzoganis, and A. Zhukov, High dimensional characterization of the longitudinal phase space formed in a radio frequency quadrupole, Phys. Rev. Accel. Beams 23, 124201 (2020).

\ [3] A. Hoover, K. Ruisard, A. Aleksandrov, A. Zhukov, and S. Cousineau, Analysis of a hadron beam in fivedimensional phase space, Phys. Rev. Accel. Beams 26, 064202 (2023).

\ [4] Y. Liu, C. Long, and A. Aleksandrov, Nonintrusive measurement of time-resolved emittances of 1-gev operational hydrogen ion beam using a laser comb, Phys. Rev. Accel. Beams 23, 102806 (2020).

\ [5] A. Wolski, D. C. Christie, B. L. Militsyn, D. J. Scott, and H. Kockelbergh, Transverse phase space characterization in an accelerator test facility, Phys. Rev. Accel. Beams 23, 032804 (2020).

\ [6] K. Hock and A. Wolski, Tomographic reconstruction of the full 4D transverse phase space, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 726, 8 (2013).

\ [7] M. Wang, Z. Wang, D. Wang, W. Liu, B. Wang, M. Wang, M. Qiu, X. Guan, X. Wang, W. Huang, and S. Zheng, Four-dimensional phase space measurement using multiple two-dimensional profiles, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 943, 162438 (2019).

\ [8] B. Marchetti, A. Grudiev, P. Craievich, R. Assmann, H.- H. Braun, N. Catalan Lasheras, F. Christie, R. D’Arcy, R. Fortunati, R. Ganter, et al., Experimental demonstration of novel beam characterization using a polarizable x-band transverse deflection structure, Scientific reports 11, 3560 (2021).

\ [9] A. Wolski, M. A. Johnson, M. King, B. L. Militsyn, and P. H. Williams, Transverse phase space tomography in an accelerator test facility using image compression and machine learning, Phys. Rev. Accel. Beams 25, 122803 (2022).

\ [10] R. Roussel, A. Edelen, C. Mayes, D. Ratner, J. P. Gonzalez-Aguilera, S. Kim, E. Wisniewski, and J. Power, Phase space reconstruction from accelerator beam measurements using neural networks and differentiable simulations, Physical Review Letters 130, 145001 (2023).

\ [11] A. Scheinker, F. Cropp, and D. Filippetto, Adaptive autoencoder latent space tuning for more robust machine learning beyond the training set for six-dimensional phase space diagnostics of a time-varying ultrafast electron-diffraction compact accelerator, Phys. Rev. E 107, 045302 (2023).

\ [12] S. Jaster-Merz, R. W. Assmann, R. Brinkmann, F. Burkart, W. Hillert, M. Stanitzki, and T. Vinatier, 5D tomographic phase-space reconstruction of particle bunches, Phys. Rev. Accel. Beams 27, 072801 (2024).

\ [13] R. Roussel, J. P. Gonzalez-Aguilera, A. Edelen, E. Wisniewski, A. Ody, W. Liu, Y.-K. Kim, and J. Power, Efficient 6-dimensional phase space reconstruction from experimental measurements using generative machine learning (2024).

\ [14] S. Press´e, K. Ghosh, J. Lee, and K. A. Dill, Principles of maximum entropy and maximum caliber in statistical physics, Rev. Mod. Phys. 85, 1115 (2013).

\ [15] J. Skilling and S. F. Gull, Bayesian maximum entropy image reconstruction, Lecture Notes-Monograph Series , 341 (1991).

\ [16] R. D. Rosenkrantz, ET Jaynes: Papers on probability, statistics and statistical physics, Vol. 158 (Springer Science & Business Media, 2012).

\ [17] A. Giffin, Maximum Entropy: The Universal Method for Inference, Ph.D. thesis, University at Albany, State University of New York, Albany, NY, USA (2008).

\ [18] G. Loaiza-Ganem, Y. Gao, and J. P. Cunningham, Maximum entropy flow networks, in International Conference on Learning Representations (2016).

\ [19] J. C. Wong, A. Shishlo, A. Aleksandrov, Y. Liu, and C. Long, 4D transverse phase space tomography of an operational hydrogen ion beam via noninvasive 2d measurements using laser wires, Physical Review Accelerators and Beams 25, 10.1103/PhysRevAccelBeams.25.042801 (2022).

\ [20] C. Mottershead, Maximum entropy tomography, in Proceedings of the Fifteenth International Workshop on Maximum Entropy and Bayesian Methods, Santa Fe, New Mexico, USA (Springer, 1996) pp. 425–430.

\ [21] G. Minerbo, MENT: A maximum entropy algorithm for reconstructing a source from projection data, Computer Graphics and Image Processing 10, 48 (1979).

\ [22] N. J. Dusaussoy and I. E. Abdou, The extended MENT algorithm: a maximum entropy type algorithm using prior knowledge for computerized tomography, IEEE Transactions on Signal Processing 39, 1164 (1991).

\ [23] A. Tran and Y. Hao, Beam tomography with coupling using maximum entropy technique, in Proc. 14th International Particle Accelerator Conference, 14 (JACoW Publishing, Geneva, Switzerland, 2023) pp. 3944–3947.

\ [24] S. Bond-Taylor, A. Leach, Y. Long, and C. G. Willcocks, Deep generative modelling: A comparative review of vaes, gans, normalizing flows, energy-based and autoregressive models, IEEE transactions on pattern analysis and machine intelligence 44, 7327 (2021).

\ [25] J. Kaiser, C. Xu, A. Eichler, and A. Santamaria Garcia, Bridging the gap between machine learning and particle accelerator physics with high-speed, differentiable simulations, Phys. Rev. Accel. Beams 27, 054601 (2024).

\ [26] Z. Ao and J. Li, Entropy estimation via normalizing flow, in Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36 (2022) pp. 9990–9998.

\ [27] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed, and B. Lakshminarayanan, Normalizing flows for probabilistic modeling and inference, The Journal of Machine Learning Research 22, 2617 (2021).

\ [28] V. Stimper, B. Sch¨olkopf, and J. M. Hern´andez-Lobato, Resampling base distributions of normalizing flows, in Proceedings of the 25th International Conference on Artificial Intelligence and Statistics (AISTATS), Proceedings of Machine Learning Research, Vol. 151 (PMLR, 2022) pp. 4915–4936.

\ [29] G. M. Green, Y.-S. Ting, and H. Kamdar, Deep potential: Recovering the gravitational potential from a snapshot of phase space, The Astrophysical Journal 942, 26 (2023).

\ [30] C. Durkan, A. Bekasov, I. Murray, and G. Papamakarios, Neural spline flows, Advances in neural information processing systems 32 (2019).

\ [31] G. Papamakarios, T. Pavlakou, and I. Murray, Masked autoregressive flow for density estimation, Advances in neural information processing systems 30 (2017).

\ [32] A. Hoover, MENT-Flow: maximum-entropy phase space tomography using normalizing flows, 10.5281/zenodo.11110801 (2024).

\ [33] A. Aleksandrov, S. Cousineau, and K. Ruisard, Understanding beam distributions in hadron linacs in the presence of space charge, Journal of Instrumentation 15 (7), P07025.

\ [34] M. Laszkiewicz, J. Lederer, and A. Fischer, Marginal tailadaptive normalizing flows, in Proceedings of the 39th International Conference on Machine Learning, Proceedings of Machine Learning Research, Vol. 162, edited by K. Chaudhuri, S. Jegelka, L. Song, C. Szepesvari, G. Niu, and S. Sabato (PMLR, 2022) pp. 12020–12048.

\ [35] S. Basir and I. Senocak, An adaptive augmented lagrangian method for training physics and equality constrained artificial neural networks, arXiv preprint arXiv:2306.04904 (2023).

\ [36] B. Dai and U. Seljak, Sliced iterative normalizing flows, in Proceedings of the 38th International Conference on Machine Learning, Proceedings of Machine Learning Research, Vol. 139, edited by M. Meila and T. Zhang (PMLR, 2021) pp. 2352–2364.

\ [37] B. Klartag, A central limit theorem for convex sets, Inventiones mathematicae 168, 91 (2007).

\ [38] J. Qiang, Differentiable self-consistent space-charge simulation for accelerator design, Phys. Rev. Accel. Beams 26, 024601 (2023).

\ [39] M. Mardani, J. Song, J. Kautz, and A. Vahdat, A variational perspective on solving inverse problems with diffusion models, arXiv preprint arXiv:2305.04391 (2023).

\

:::info Authors:

(1) Austin Hoover, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA (hooveram@ornl.gov);

(2) Jonathan C. Wong, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.

:::


:::info This paper is available on arxiv under CC BY 4.0 DEED license.

:::

\

Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

CME Group to Launch Solana and XRP Futures Options

CME Group to Launch Solana and XRP Futures Options

The post CME Group to Launch Solana and XRP Futures Options appeared on BitcoinEthereumNews.com. An announcement was made by CME Group, the largest derivatives exchanger worldwide, revealed that it would introduce options for Solana and XRP futures. It is the latest addition to CME crypto derivatives as institutions and retail investors increase their demand for Solana and XRP. CME Expands Crypto Offerings With Solana and XRP Options Launch According to a press release, the launch is scheduled for October 13, 2025, pending regulatory approval. The new products will allow traders to access options on Solana, Micro Solana, XRP, and Micro XRP futures. Expiries will be offered on business days on a monthly, and quarterly basis to provide more flexibility to market players. CME Group said the contracts are designed to meet demand from institutions, hedge funds, and active retail traders. According to Giovanni Vicioso, the launch reflects high liquidity in Solana and XRP futures. Vicioso is the Global Head of Cryptocurrency Products for the CME Group. He noted that the new contracts will provide additional tools for risk management and exposure strategies. Recently, CME XRP futures registered record open interest amid ETF approval optimism, reinforcing confidence in contract demand. Cumberland, one of the leading liquidity providers, welcomed the development and said it highlights the shift beyond Bitcoin and Ethereum. FalconX, another trading firm, added that rising digital asset treasuries are increasing the need for hedging tools on alternative tokens like Solana and XRP. High Record Trading Volumes Demand Solana and XRP Futures Solana futures and XRP continue to gain popularity since their launch earlier this year. According to CME official records, many have bought and sold more than 540,000 Solana futures contracts since March. A value that amounts to over $22 billion dollars. Solana contracts hit a record 9,000 contracts in August, worth $437 million. Open interest also set a record at 12,500 contracts.…
Share
BitcoinEthereumNews2025/09/18 01:39
Ripple Exec Reveals Why The Bitcoin Price Is So High Now

Ripple Exec Reveals Why The Bitcoin Price Is So High Now

Ripple’s Chief Technology Officer (CTO), David Schwartz, has provided a clear explanation for why the Bitcoin price remains so high, currently the most expensive cryptocurrency on the market. Notably, Schwartz’s statement had sparked new discussions across the crypto community. His remarks focused on how people view and use BTC in transactions, revealing a simple economic truth that helps explain the market’s continued confidence in the world’s leading cryptocurrency.  Ripple CTO Explains Logic Behind Elevated Bitcoin Price On Tuesday, Schwartz shared his thoughts on X, offering a simple but insightful explanation for Bitcoin’s current price strength. Responding to a community member’s question about why anyone would spend BTC given its potential for future appreciation, Schwartz explained that the reason lies in the asset’s perceived value and future expectations.  Related Reading: Why Did The Bitcoin And Ethereum Prices Crash On October 10 And Will It Happen Again? According to the Ripple CTO, when individuals use Bitcoin to pay for goods or services, they are essentially realizing the full expected value of its future growth today. Rather than holding Bitcoin as a long-term investment and waiting for price gains, these users convert its potential into immediate utility. This behavior, he noted, reflects a broader belief in BTC’s enduring value and is one of the primary reasons why the cryptocurrency’s price remains so high.  Notably, Schwartz’s remarks followed a conversation that began when Jack Dorsey, co-founder of Square, a business technology company, announced that Bitcoin payments had gone live across the firm’s platforms. Dorsey revealed that Square customers can now pay for services and products using Bitcoin directly, and sellers can choose between multiple settlement options, including BTC-to-BTC, BTC-to-fiat, and fiat-to-BTC transactions. Funds received through Bitcoin payments will be automatically stored in a user’s Square wallet, with self-custody transfer limits of up to $15,000 per day or $50,000 per week.  Interestingly, the timing of Schwartz’s explanation comes a month after BTC reached a new all-time high of over $126,000. Compared to other digital assets, Bitcoin is the only cryptocurrency in the six-figure territory, even surpassing traditional investments like gold and major stock indices. While some analysts argue that Bitcoin is overvalued, many investors remain convinced that it could still climb significantly higher in the long term. Bitcoin Price Expected To Rise Even Higher  The Bitcoin price is currently sitting above the $100,000 level, but analysts believe it could rise even further. The leading cryptocurrency is hovering near $103,300, experiencing some volatility, which has triggered a nearly 2% dip in the past 24 hours amid whale capitulations. Crypto analyst Joe Francesco noted that Bitcoin had initially surged to $107,000 following a wave of optimism sparked by US President Donald Trump’s proposed $2,000 stimulus plan.  Related Reading: New XRP ETF Just Dropped, But Will Anything Be Different This Time? However, the rally proved short-lived, as BTC fell a few days later. Despite the pullback, Francesco has described the cryptocurrency’s chart setup as positive, predicting that Bitcoin could soon break through $107,000, with the potential to reach $115,000 and even $120,000 if upward momentum continues.  Featured image created with Dall.E, chart from Tradingview.com
Share
NewsBTC2025/11/13 02:30