Sai’s early industry roles involved building and leading search and recommendation systems at large Indian e-commerce platforms, including Myntra and Zomato.Sai’s early industry roles involved building and leading search and recommendation systems at large Indian e-commerce platforms, including Myntra and Zomato.

Engineering at Scale: From Search Systems to AI-Native Platforms and Data Products

2025/12/31 20:01
6 min read

Every system changes once it reaches a particular scale. Traffic grows unevenly, assumptions stop holding, and design decisions that once felt minor begin to shape everything that follows.

This article traces the engineering career of Sai Sreenivas Kodur, from building large-scale search and recommendation systems in e-commerce to leading enterprise AI platforms and domain-specific data products.

Along the way, it looks at how working at scale shifts an engineer’s focus from individual components to platform foundations, data workflows, and team structures, especially as AI changes how software is built.

Early Foundations in Systems and Machine Learning

Sai Sreenivas Kodur completed both his bachelor’s and master’s degrees in Computer Science and Engineering at the Indian Institute of Technology, Madras.

During his undergraduate and graduate studies, he focused on compilers and machine learning. His research explored how machine learning techniques could be applied to improve software performance across heterogeneous hardware environments.

This work required thinking across layers. Performance was treated as a system-level outcome shaped by algorithms, execution models, and hardware constraints working together. Small implementation choices often produced large downstream effects.

The academic environment emphasized rigorous reasoning and first-principles thinking. By the end of graduate school, the most durable outcome of this training was not familiarity with specific tools, but the ability to learn new systems deeply and adapt to changing technical contexts.

Search and Recommendation Systems at Scale

Sai’s early industry roles involved building and leading search and recommendation systems at large Indian e-commerce platforms, including Myntra and Zomato.

These systems supported indexing, retrieval, and ranking across catalogs of more than one million frequently changing items. They handled approximately 300,000 requests per minute.

At this scale, system behavior reflected multiple competing constraints. Index freshness had to be balanced against latency requirements. Ranking quality depended on data pipelines, infrastructure reliability, and model behavior operating together.

Many issues surfaced only after deployment. Design decisions that appeared correct in isolation behaved differently once exposed to real traffic patterns, delayed signals, and uneven load distribution.

This work reinforced the importance of aligning technical design with product usage patterns. Improvements in relevance or performance required coordination across distributed systems, data ingestion, and application behavior rather than isolated changes to individual components.

Startup Environments and Broader Engineering Exposure

Early in his career, Sai chose to work primarily in startup environments.

These roles offered exposure to a wide range of engineering responsibilities, including system design, production operations, and close collaboration with product and business teams. Technical decisions were closely tied to customer requirements and operational constraints.

In these settings, the effects of architectural choices surfaced quickly. Systems with weak foundations required frequent rework as usage increased. Systems built with precise abstractions and reliable pipelines were easier to extend over time.

This experience broadened his perspective on engineering. Systems were defined not only by code and infrastructure, but also by how teams worked, how decisions were made, and how platforms were maintained as they grew.

Building Food Intelligence Systems at Spoonshot

Sai later co-founded Spoonshot and served as its Chief Technology Officer.

Spoonshot focused on building a data intelligence platform for the food and beverage industry. The core system, Foodbrain, combined more than 100 terabytes of alternative data from over 30,000 sources with AI models and domain-specific food knowledge.

This foundation powered Genesis, a product used by global food brands such as PepsiCo, Coca-Cola, and Heinz to support innovation and product development decisions.

Building Foodbrain involved working with noisy data sources, evolving domain requirements, and enterprise reliability expectations. The system needed to accommodate changing inputs without frequent architectural changes.

Under Sai’s technical leadership, Spoonshot raised over $4 million in venture funding and scaled to a team of more than 50 across the US and India.

During this period, he introduced data-centric AI practices by creating a dedicated data operations function alongside the data science team. This reduced the turnaround time for new model development by 60% while maintaining accuracy above 90%.

Enterprise AI Platforms and Reliability

Sai later served as Director of Engineering at ObserveAI, where he led platform engineering, analytics, and enterprise product teams.

The platform supported enterprise customers such as DoorDash, Uber, Swiggy, and Asurion. These customers had strict expectations around reliability, performance, and operational visibility.

Scaling the platform to support a tenfold increase in usage required changes across infrastructure, data ingestion pipelines, and observability practices. These efforts contributed to more than $15 million in additional annual recurring revenue.

Alongside technical scaling, Sai focused on building engineering leadership capacity. He helped define hiring frameworks, conducted over 130 interviews, and hired senior engineering leaders to support long-term platform development.

This phase highlighted how organizational structure influences system outcomes. As platforms grow more complex, coordination, ownership, and decision-making processes become part of the technical system.

From Systems Engineering to AI-Native Teams

Across roles, Sai maintained hands-on involvement while gradually expanding into broader technical leadership responsibilities.

His focus increasingly shifted toward platform foundations and workflows that allow teams to work effectively with complex data and AI systems. Mentorship of senior engineers and investment in precise abstractions became essential parts of this work.

His research publications reflect this practical focus. Papers such as "Genesis: Food Innovation Intelligence" and "Debugmate: an AI agent for efficient on-call debugging in complex production systems" examined how AI can support product and engineering workflows.

Debugmate demonstrated a 77% reduction in on-call load by assisting engineers with incident triage using observability data and system context.

Long-Term Engineering Foundations

Looking across Sai Sreenivas Kodur’s career, a consistent theme is an emphasis on building systems that remain reliable as complexity increases.

As AI accelerates software development, this focus becomes more critical, especially when teams begin building truly AI-native software teams rather than layering AI onto existing architectures. AI agents introduce new workloads and different patterns of system usage. Data and infrastructure platforms originally designed for human users must adapt to support these changes.

Rather than focusing on individual productivity gains, this work centers on platform foundations, data workflows, and team structures that can scale over time.

The career reflects an engineering approach grounded in clarity, durability, and long-term impact.

\ Sai Sreenivas Kodur - Image | LinkedIn

\

Market Opportunity
null Logo
null Price(null)
--
----
USD
null (null) Live Price Chart
Disclaimer: The articles reposted on this site are sourced from public platforms and are provided for informational purposes only. They do not necessarily reflect the views of MEXC. All rights remain with the original authors. If you believe any content infringes on third-party rights, please contact service@support.mexc.com for removal. MEXC makes no guarantees regarding the accuracy, completeness, or timeliness of the content and is not responsible for any actions taken based on the information provided. The content does not constitute financial, legal, or other professional advice, nor should it be considered a recommendation or endorsement by MEXC.

You May Also Like

Crypto Shows Mixed Reaction To Rate Cuts and Powell’s Speech

Crypto Shows Mixed Reaction To Rate Cuts and Powell’s Speech

The post Crypto Shows Mixed Reaction To Rate Cuts and Powell’s Speech appeared on BitcoinEthereumNews.com. Jerome Powell gave a speech justifying the Fed’s decision to push one rate cut today. Even though a cut took place as predicted, most leading cryptoassets began falling after a momentary price boost. Additionally, Powell directly addressed President Trump’s attempts to influence Fed policy, claiming that it didn’t impact today’s decisions. In previous speeches, he skirted around this elephant in the room. Sponsored Sponsored Powell’s FOMC Speech The FOMC just announced its decision to cut US interest rates, a highly-telegraphed move with substantial market implications. Jerome Powell, Chair of the Federal Reserve, gave a speech to help explain this moderate decision. In his speech, Powell discussed several negative economic factors in the US right now, including dour Jobs Reports and inflation concerns. These contribute to a degree of fiscal uncertainty which led Powell to stick with his conservative instincts, leaving tools available for future action. “At today’s meeting, the Committee decided to lower the target range…by a quarter percentage point… and to continue reducing the size of our balance sheet. Changes to government policies continue to evolve, and their impacts on the economy remain uncertain,” he claimed. Crypto’s Muted Response The Fed is in a delicate position, balancing the concerns of inflation and employment. This conservative approach may help explain why crypto markets did not react much to Powell’s speech: Bitcoin (BTC) Price Performance. Source: CoinGecko Sponsored Sponsored Bitcoin, alongside the other leading cryptoassets, exhibited similar movements during the rate cuts and Powell’s speech. Although there were brief price spikes immediately after the announcement, subsequent drops ate these gains. BTC, ETH, XRP, DOGE, ADA, and more all fell more than 1% since the Fed’s announcement. Breaking with Precedent However, Powell’s speech did differ from his previous statements in one key respect: he directly addressed claims that President Trump is attacking…
Share
BitcoinEthereumNews2025/09/18 09:01
Hedera (HBAR) Price Today, Chart & Market Cap | Live HBAR to USD Converter

Hedera (HBAR) Price Today, Chart & Market Cap | Live HBAR to USD Converter

Hedera (HBAR) price today is $0.092471 USD with a $3.98B market cap. Check live HBAR price charts, 24h volume, market rank, and price predictions for 2026.
Share
Blockchainmagazine2026/02/13 16:45
CME to launch Solana and XRP futures options on October 13, 2025

CME to launch Solana and XRP futures options on October 13, 2025

The post CME to launch Solana and XRP futures options on October 13, 2025 appeared on BitcoinEthereumNews.com. Key Takeaways CME Group will launch futures options for Solana (SOL) and XRP. The launch date is set for October 13, 2025. CME Group will launch futures options for Solana and XRP on October 13, 2025. The Chicago-based derivatives exchange will add the new crypto derivatives products to its existing digital asset offerings. The launch will provide institutional and retail traders with additional tools to hedge positions and speculate on price movements for both digital assets. The futures options will be based on CME’s existing Solana and XRP futures contracts. Trading will be conducted through CME Globex, the exchange’s electronic trading platform. Source: https://cryptobriefing.com/cme-solana-xrp-futures-options-launch-2025/
Share
BitcoinEthereumNews2025/09/18 01:07